REFERAT-MenüDeutschGeographieGeschichteChemieBiographienElektronik
 EnglischEpochenFranzösischBiologieInformatikItalienisch
 KunstLateinLiteraturMathematikMusikPhilosophie
 PhysikPolitikPsychologieRechtSonstigeSpanisch
 SportTechnikWirtschaftWirtschaftskunde  



Erdol - Veredelung,und Eigenschaften von Erdol




Erdöl

Veredelung,

und Eigenschaften von Erdöl














Erdöl

Wir alle haben direkt und indirekt mit dem Mineralöl zu tun. Wir fahren in einem Kraftwagen, wir brauchen Arzneien, Kosmetika, Haushaltsgegenstände aller Art aus Kunststoff, wir brauchen Mineralöl zur Erzeugung von Wärme und Energie, als Schmierstoff zum Schutz der Maschinen. Überall ist das Mineralöl dabei. Es ist zur Zeit aus unserem Leben nicht mehr wegzudenken. Woher kommt dieser lebenswichtige Stoff? Wie entstehen die Produkte, die uns helfen, besser und bequemer zu leben? Dies aufzuzeigen, ist der Sinn der folgenden Seiten über das Suchen, Fördern und Verarbeiten von Erdöl und Erdgas. Das Erdöl hat in der zweiten Hälfte unseres Jahrhunderts eine solche weltwirtschaftliche Bedeutung erlangt, daß wir Ihnen zunächst etwas über seine Vorgeschichte sagen möchten. Bereits vor Jahrtausenden haben Chinesen, Agypter und Assyrer und später auch die Römer aus dem Boden austretendes Erdöl als Heil- und Beleuchtungsmittel verwendet. Auch bei uns in Deutschland war schon um das Jahr 1400 Erdöl bekannt. In der Nähe des Tegernsees wurde das in kleinen Mengen austretenden Erdöl von den Mönchen unter dem Namen St.-Quirinus-ÖI zu Heilzwecken benutzt. Jahrhunderte hindurch wurde das Erdöl in technisch sehr primitiver Form gewonnen und verarbeitet. Erst mit Beginn der Industrialisierung erkannte man die überragende Bedeutung des Erdöls. Die Geschichte der Mineralölindustrie begann um die Mitte des vorigen Jahrhunderts, als im Jahre 1859 der Amerikaner Edwin L. Drake in der Nähe von Titusville in Pennsylvanien eine Bohrung niederbrachte, die in einer Tiefe von 67 ft. (ca. 20 m) Erdöl antraf. In Deutschland hatte man bereits im Jahre 1858- erfolglos - in Wietze bei Celle nach Erdöl gebohrt. Erst im Jahre 1876 konnte die erste systematische Erdölproduktion in Wietze aufgenommen werden. In der Welt nahm die Erdölproduktion einen sprunghaften Anstieg. Betrug die Welterdölförderung im Jahre 1860 erst rund 70.000 t, so war sie im Jahre 1900 schon auf 21 Mio. t angewachsen. Von diesem Jahre an stieg sie - angeregt durch die Erfindung der Otto- und Dieselmotoren - auf Grund der Entdeckung neuer, reichhaltiger Erdölvorkommen in aller Welt bis zum Jahre 1930 auf 200 Mio. t. Im Jahre 1960 überschritt sie zum ersten Male die Milliardengrenze und hat sich in dem Jahrzehnt von 1960 bis 1969 mehr als verdoppelt. 1979 erreichte die Welterdöl-Förderung den Rekordstand von 3,191 Mrd. t, sank dann bis 1982 wieder auf 2,8 Mrd. t. Die großen Erdölvorkommen liegen auf der nördlichen Hälfte des Erdballs. Amerika hat seine Vorkommen vor der Küste des Golfs von Mexiko, in den Staaten Texas, Louisiana, Oklahoma bis zu den großen Seen und im Westen entlang den Gebirgszügen der Rocky Mountains bis hinauf nach Alaska. Weitere Fördergebiete gibt es in Kalifornien an der Pazifischen Küste, in Mexiko und in Südamerika in den Küstenprovinzen Venezuelas, in Peru und in Argentinien. In Asien finden wir die größten Vorkommen in den Ländern des Nahen Ostens, in China sowie in Indonesien. Im asiatischen Teil der Sowjetunion wurden ebenfalls große Ölgebiete in Sibirien und Kasachstan entdeckt. In den sechziger Jahren ist Afrika zu einem der großen Erdölproduzenten geworden. Hier trägt vor allem die Produktion Libyens und Nigerias zur Deckung des deutschen Bedarfs bei. Europa galt vor Entdeckung der Vorkommen in der Nordsee immer als wenig ölhöffiges Gebiet im Vergleich zu den anderen genannten Kontinenten. Die Erdölvorkommen von Rumänien und Baku waren längere Zeit die bedeutendsten. Weitere europäische Vorkommen wurden im Wiener Becken und in Galizien entdeckt. Zu dem ältesten deutschen Ölfeld Wietze kamen in den folgenden Jahrzehnten die Felder Eddesse-Ölheim (1880), Nienhagen (1889), Oberg (1919) und Reitbrook (1937) hinzu. Der zweite Weltkrieg unterbrach die stetige Entwicklung der deutschen Erdölgewinnung, die von 174.000 t im Jahre 1930 auf 552.000 t im Jahre 1938 angestiegen war. Während des Krieges wurde die Produktion in Deutschland in verschiedenen Feldern so übersteigert, daß sich dies nachteilig auf die spätere Förderung auswirkte. Materialknappheit und unmoderne Geräte hemmten in den ersten Jahren nach dem Kriege eine gesunde Entwicklung der deutschen Ölgewinnungsindustrie. In den fünfziger Jahren konnte sie durch eine Modernisierung der notwendigen geophysikalischen Geräte, der Bohrwerkzeuge und der Fördereinrichtungen - nicht zuletzt mit Hilfe amerikanischer Apparaturen - soweit vorangetrieben werden, daß die Erschließung und Ausbeute immer tiefer aufgefundener Lagerstätten möglich geworden ist. So konnte die deutsche Erdölförderung von 547.000 t im Jahre 1945 auf rund 8 Mio. t im Jahre 1968 gesteigert werden. Die natürliche Erschöpfung der älteren Erdölfelder in der Bundesrepublik hat seitdem zu einem Rückgang der Förderung geführt, der durch die höhere Ausbeute einiger jüngerer Felder, sowie durch Anwendung sekundärer Fördermethoden nicht ganz wettgemacht werden konnte. 1982 erreichte die Förderung nur noch rund 4,3 Mio. t. Sie genügt aber schon lange nicht mehr, um den in den letzten zwanzig Jahren ungeheuer gestiegenen Gesamtbedarf der Bundesrepublik an Mineralöl zu decken.

In den sechziger Jahren ist die Erdgasförderung von wachsender Bedeutung für die deutsche Energieversorgung geworden. Rund 17 Mrd. Nm (Nomalkubikmeter) wurden 1982 in der Bundesrepublik gefördert. Damit ist einheimisches Erdgas zu einem wichtigen Energieträger geworden, der - zusammen mit Erdgasimporten aus den Niederlanden, der UdSSR' und der Nordsee - einen wachsenden Anteil des Bedarfs in Industrie.









Raffinerie:


Etwa ein drittel den in Deutschland verbrauchten Mineralölprodukten kommen in fertiger Form in unser Land. Der überwiegende Teil unserer Importe - ergänzt durch die heimische Förderung - besteht hingegen aus Rohöl durch seine Umwandlung bzw. Verarbeitung in den Raffinerien.

Raffinerien sind die Fabriken der Mineralölindustrie. Sie unterscheiden sich jedoch deutlich von anderen Fabrikationsanlagen. Allein das äußere Bild einer Raffinerie mit der Vielzahl von Türmen, zylindrischen Behältern und zahllosen Rohrleitungen macht den besonderen Charakter dieser Produktionsstätte deutlich.

Ein weiterer grundlegender Unterschied zu anderen Fabriken besteht darin, daß in Raffinerien mit Öl und seinen Produkten nur Stoffe in flüssigem oder gasförmigen Zustand verarbeitet werden. Die Verarbeitungsverfahren weisen einen hohen Automatisierungsgrad auf. Vor allem dadurch ist die Aufrechterhaltung des stetigen Ablaufes der komplizierten Prozesse möglich. Regel-, Kontroll- und Meßgeräte sind in Zentral- und Einzelanlagen zugehörigen Kontrollräumen zusammengefaßt, in denen sie vom Anlagepersonal betreut werden. Von hier aus wird die Anlage 'gefahren', das heißt es werden Drücke, Temperaturen, Mengen, Flüssigkeitsstände und Qualtitätsanforderungen vorgegeben und überwacht.

Rund 300 Mitarbeiter braucht eine Raffinerie mittlerer Größenordnung, von denen ein Teil im Schichtbereich arbeiten. Ihre Aufgabe ist die Überwachung und Steuerung des kontinuierlichen Betriebs der verschiedenen Anlagen. Schichtbetrieb ist notwendig, weil eine Raffinerie, ähnlich wie eine Hochofenanlage, aus technischen Gründen rund um die Uhr in Betrieb gehalten werden muß.

Neben den Verarbeitungsanlagen gehören Tank- und Transportanlagen sowie die Energieversorgung zum Gesamtkomplex der Produktionsstätte der größte Teil des Raffineriegeländes wird dabei von den Tanklagern eingenommen, die Unterschiede zwischen Produktion und Verbrauch ausgleichen.

Das gilt für Rohöl wie auch für Fertigprodukte. Denn während die Produktion im Zeitablauf nahezu konstant bleiben sollte, schwankt die Produktnachfrage zum Beispiel als Folge saisonaler Einflüsse. Die Anlagenfahrweisse, die zwischen Rohölzufuhr und Produktabgabe den Ausgleich herstellt wird von einer besonderen Betriebsabteilung (Prozesskontrolle) festgelegt.

Die Raffinerie verfügt über Laboratorien zur Überwachung der Qualität der Fertigprodukte. Verschiedene Werkstätten führen schließlich die verschiedensten Reparaturen aus, eine Sicherheitsabteilung überwacht alle Maßnahmen der Arbeits- und Betriebssicherheit. Der Umweltschutzbeauftragte kontrolliert die Einhaltung der gesetzlichen und lokalen Auflagen. Erste Hilfe - Station, soziale Einrichtungen und Verwaltung vervollständigen die Raffinerie.

Letztlich sei noch auf die Fackel hingewiesen die neben Tanks und Destillationstürmen das Außere Bild einer Raffinerie mitbestimmt. Die Fackel ist für eine Raffinerie eine unbedingt notwendige Sicherheitseinrichtung. Bei der Rohölverarbeitung können aus unterschiedlichen Gründen gelegentlich hohe Drücke in den Prozeßanlagen entstehen. Damit Behälter und Rohrleitungen nicht aufreißen, muß der Überdruck durch Sicherheitsventile abgebaut können. Sicherheitsventile blasen in Leitungen ab die zur Fackel führen. Dort können die Gase den Überdruck ausströmen kontrolliert verbrannt werden. Heute werden durch Einrichtungen zur Fackelgasrückgewinnung die anfallenden Gase in der Raffinerie für Feuerungszwecke genutzt. Am Fackelkopf ist daher selten mehr als eine kleine Zündflamme zu sehen.

Überhaupt sind Sicherheits- und Umweltschutzeinrichtungen heute - wenn auch nicht immer von Außen erkennbar - ein wesentlicher Teil der Raffinerieanlage. Eine Vielzahl von Auflagen müssen erfüllt werden: Grenzwerte für den Ausstoß (Emission) von Luftschadstoffen gehören dazu, Maßnahmen zur Lärmbegrenzung, Anforderung an die Beschaffens des Abwassers, besondere Sicherheitstechnisse Anforderungen an den Bau der Analge sowie die Installation von Meßgeräten zur Feststellung der Emission und Messprogramme zur Feststellung luftverunreinigender Stoffe im Einwirkungsbereich der Raffinerie (Immissionen).

Insgesamt erstreckt sich der Umweltschutz im Raffineriebreich auf Umweltschonende Herstellungsverfahren, die Herstellung umweltfreundlicher Produkte und die Überwachung der Betriebsanlagen einschließlich der Messprogramme bis hin zum Landschaftsschutz. In den letzten Jahren hat die Mineralölindusitrie bis zu einem Fünftel ihrer Investitionen für den Umweltschutz aufgwendet.Die laufenden Betriebskosten für diese Anlagen schlagen mit jährlich etwa 1 Milliarde DM zubuche. 



















Erdölchemie:


Die Kohlenwasserstoff:


Erdöl enthält eine Vielzahl verschiedenartiger Verbindungen die im wesentlichen aus Kohlenstoffen und Wasserstoffen bestehen. Daneben finden sich immer auch Verbindungen mit Schwefel, Stickstoff, Sauerstoff und Spurenelementen.

Die Bausteine dieser Verbindungen, die chemischen Elemente unterscheiden sich außer in ihren allgemeinen chemischen Eigenschaften auch durch ihre Wertigkeit, das heißt ihr Vermögen, sich mit einem oder mehreren Atomen zu Molekülen zu verbinden. Wasserstoff ist einwertig das heißt: Ein H-Atom kann nur ein einziges Atom an sich binden. Der Kohlenstoff tritt immer Vierwertig auf: z.B.CH . Er bildet das Gerüst der Kohlenwasserstoffmoleküle, in denen die einzelnen C-Atome sich kettenförmig, verzweigt oder ringförmig aneinanderreihen. Wenn die C-Atome mit einander verbunden sind spricht man von gesättigten Kohlenwasserstoffen. Es kommen aber auch ungesättigte Kohlenwasserstoffe vor, in denen zwei C-Atome doppelt oder dreifach gebunden sind. Je nach Art der Bindung der C-Atome aneinander unterscheidet man bei der Mineralölverarbeitung vier Hauptgruppen von Kohlenwasserstoffen. Paraffine, Oleffine, Naphtene und Aromaten (siehe Abbildung unterhalb dieses Textes).


Raffinerietechnik:


Wie aus folgenden graphisch dargestellten Verarbeitungsschema hervorgeht, gibt es in der Raffinerie drei Hauptprozeßgruppen:

Trennung, Umwandlung und Nachbehandlung. Bei der Trennung (Destillation) wird der Einsatzstoff (Rohöl) in Produkte mit verschiedenen Sidebereichen und damit unterschiedlichen Molekulargrößen aufgeteilt. Bei der Umwandlung (Konversion) wird die Größe oder die Struktur der einzelnen Moleküle verändert. Zuletzt werden bei der Nachbehandlung unerwünschte Produktbestandteile entfernt und die Produkteigenschaften - wie z.B. Farbe, Geruch und Stabilität - verbessert.










Die Destillation


Der wichtigste Verarbeitungsprozeß in einer Raffinerie ist die Destillation. Dabei wird das Rohöl in verschiedene Fraktionen zerlegt.

Im Hauptturm der Rohöldestillation erfolgt die Auftrennung in die einzelnen Produktgruppen, die durch ihre unterschiedlichen Siedebereiche gekennzeichnet sind. Benzin siedet zum Beispiel zwischen 35 und 180 °C, Mitteldestillate dagegen erst bei  170 bis 370 ° C. Nachdem das Öl den Rohöltank verlassen hat wird zuerst in einem Entsalzer der Salzgehalt des Rohöls reduziert. Dann wird das Öl in Wärmeaustauschern vorgewärmt und in den Röhrenöfen auf Destillationstemperatur aufgeheitzt dabei verdampft ein Großteil des Rohöls.

Das Dampf- /Flüssigkeitsgemisch trennt sich bei atmosphärischem Druck in den bis zu 50 m hohen DestilIationstürmen auf. Die Dämpfe steigen in den Türmen hoch. Je schwerer sie sind, desto schneller verflüssigen sie sich wieder.

Auf den Destillationsböden, die mit zahlreichen Öffnungen versehen sind, bilden sich dadurch Flüssigkeitsschichten. Nachströmende Dämpfe treten durch bei Öffnungen und mischen sich mit den bereits kondensierten Bestandteilen. Bei dieser intensiven Vermischung der leichteren und schwereren Anteile findet ein Austausch statt: Schwere Teile des aufsteigenden Stromes werden zurückgehalten und leichte, die noch in der Flüssigkeitsschicht sind, verdampfen wieder und steigen nach oben. Ein Teil der Flüssigkeit wird zur Verstärkung dieses Stoffaustausches wieder auf den nächsttieferen Destillationsboden zurückgeführt.


Ein Destilltionsturm enthält eine beträchtliche Anzahl solcher Böden. Die leichtesten Produkte [ Methan, Ethan, Propan, Butan (das kennen wir doch irgendwoher ?!?!?!)] Durchströmen die Destillationskolonne geradewegs und kommen am Kolonnenkopf gemeinsam als Gase an. Sie werden anschließend durch erneute Destillation wieder aufgetrennt. Die nicht verdampften schwersten Anteile fließen zum Boden der Kolonne und werden dort abgezogen. Im Mittelteil des Turmes werden von den betreffenden Böden die Mitteldestillate direkt abgeleitet.

Aus den Rohöldestillationstürmen werden im allgemeinen folgende Grundpunkte oder 'Fraktionen' gewonnen: Raffineriegas, Flüssiggas und Benzin am Kopf der Fraktionskolonne, Mitteldestillate an der Seite des Turmes und Rückstände am Boden der Kolonne. Allerdings kann man mit diesem Verfahren die Kohlenwasserstoffgruppen aus dem Rohöl nur so herausholen, wie sie von Natur aus darin enthalten sind. Die Ausbeute an verschiedenen Produkten ist also im wesentlichen nur durch die Verarbeitung verschiedener Rohölsorten -

Leichter oder schwerer - oder über die Verschiebung der Siedegrenzen steuerbar. Während die Wahl der Rohölsorte eine Frage der Verfügbarkeit und des Preises ist - leichte Rohöle sind wesentlich teurer und seltener als schwere - , macht man sich bei der Verschiebung der Siedegrenzen die Tatsache zu nutze, daß die Trennung der einzelnen Kohlenwasserstoffgruppen in der Destillation Spielräume bietet. So gibt es im Grenzbereich zwischen den verschiedenen Kohlenwasserstoffgruppen, den 'Schnitt', Bestandteile, die sowohl dem einen wie dem anderen Schnitt zugeordnet werden können. z.B. können etwa 3 bis 5 % des Mitteldestillatschnittes dem Benzin zugeschlagen werden. Das gleiche ist beim Übergang des Mitteldestillates zum schweren Heizöl möglich. Qualitätsanforderungen an die einzelnen Produkte setzen diesem Vorgehen allerdings Grenzen.



Vakuumdestillation:


Der Rückstand der atmosphärischen Destillation ist ein Gemisch von Stoffen, deren Siedetemperatur bei über 360° C liegen. Da sich diese Bestandteile bei noch höheren Temperaturen zersetzen würden, leitet man den Rückstand in einen zweiten Destillationstur, der unter vermindertem Druck (50 Millibar) steht. Dadurch werden die Siedetemperaturen der Gemischbestandteile um bis zu 150° C gesenkt, so daß der Rückstand schon bei niedrigen Temperaturen fraktioniert werden kann. Bei dieser Vakuumdestillation gewinnt man Schmieröle (wir haben festgestellt, daß der Motorsport ohne Vakuumdestillation nicht existieren könnte). Die Schmierölfraktionen enthalten auch Feststoffe die sogenannten Paraffine. Sie werden abgetrennt und werden Bohrwachs, Kerzen u.a. verarbeitet. Der nicht verdampfte Rest, das Bitumen, wird für Isolieranstriche, Straßenbeläge und Dachpappe verwendet.
















Das thermische Cracken:


Das älteste und einfachste Crack-Verfahren ist das thermische Cracken. Während bei der Destillation nur die von Natur aus im Rohöl vorkommenden Kohlenwasserstoffe voneinander getrennt und in Gruppen aufgeteilt werden können, verwandeln Crack-Verfahren größere Kohlenwasserstoffketten in kleinere.



Hohe Temperaturen bringen die großen Moleküle in so starke Schwingungen, das ab etwa 360°C die Bindungen zwischen den Kohlenstoffatomen zerbrechen. Dieser Vorgang spielt sich in den Röhren eines Spaltofens ab. Die Temperatur -sie kann bis zu 900°C reichen- und die Verweilzeit der Kohlenwasserstoffe im Crack-Ofen richten sich nach dem Ausgangsstoff und dem erwünschten Produktausstoß. Zur Gruppe der thermischen Crack-Verfahren gehört das Visbreaken, eine milde Form des thermischen Spaltens. Dabei sind Druck (rund 70 bar) und Temperatur (etwa 460°C) niedrig genug; daß schweres Heizöl direkt eingesetzt werden kann, ohne daß es zur Verkokung kommt. Beim Verkoken setzt sich Kohlenstoff in fester Form(Koks) ab. Allerdings ist die Ausbeute an leichten Produkten mit 20 bis 30 Prozent recht gering. Eine weitere Variante des thermischen Crackens ist das Steamcracken. Beim Steamcracken kommt man mit geringeren Temperaturen aus, weil der Katalysator den Spaltvorgang erleichtert. Dadurch erfolgt die Molekülumwandlung schonender als beim thermischen Cracken, und es entstehen Produkte höherer Qualität. Dabei werden Flüssiggase, Benzine oder Mitteldestillate in noch leichtere,,Rohstoffe' für die chemische Industrie umgewandelt.



















Katalytisches Cracken:


Ein wesentlich höheres Umwandlungsergebnis als beim thermischen erreicht man mit dem katalytischen Cracken. Der Spaltvorgang erfolgt bei etwa 500° C in Gegenwart eines Katalysators. Katalysatoren sind Stoffe die die chemische Reaktionen fördern, beschleunigen oder in eine bestimmte Richtung lenken, ohne sich selbst dabei zu verändern.


Beim katalytischen Cracken verwendet man meist staubförmige Katalysatoren, wie zum Beispiel synthetische Aluminiumsilikate, die sich in einem Dampf- Gas- Strom wie eine Flüssigkeit verhalten. Sie besitzen eine große Oberfläche (etwa 100 m2/ g). Als Einsatz kommen bei

Diesem Verfahren überwiegend Wachsdestillation in Frage, da der Katalysator beim Einsatz von Destillationsriickständen, die noch Schwermetalle aus dem Rohöl enthalten, seine Aktivität verlieren wurde. Neue Katalysatorenentwicklungen zielen darauf hin, auch das Cracken von

Destillationsrückständen zu ermöglichen.

Während des Crackvorganges setzt sich auf dem Katalysator Kohlenstoff als Koks ab und nimmt dem Katalysator seine Wirkung. Deshalb wird er Koks in einem nachgeschalteten Regenerator abgebrannt, so daß der Katalysator erneut verwendet werden kann. Die beim Abbrennen des Kokses entstehende Wärmeenergie wird für den Crackprozeß zurückgewonnen. Ergebnis des katalytischen Crackens ist ein Gemisch von Kohlenwasserstoffen, das vom gasförmigen Methan bis zum Koks aus dem Regenerator reicht. Der eigentlichen Cracksektion ist daher ein Aufbereitungsteil mit Destiliation, Flüssiggasgewinnung, Gasreinigung usw. nachgestaltet. Mit Hilfe des katalytischen Crackens wird nicht nur der Anteil von schwerem Heizöl vermindert, sondern auch gleichzeitig ein Teil des Schwefels entfernt, der im Einsatz enthalten war. Die Oktanzahl der Crackbenzine liegt bei 80 bis 85.








Hydrocracken:


Die technisch eleganteste und flexibelste, zugleich aber auch teuerste Verfahren ist das Hydrocracken. Es ist ein katalytisches Spaltverfahren in Gegenwart von Wasserstoff und mit Druck von etwa 100 bar. Es ermöglicht eine nahezu vollständige Umwandlung des Einsatzproduktes (ein Einsatzprodukt muß entschwefelt sein, sonst wäre der Katalysator unwirksam). Dieses wird vorgewärmt und zusammen mit Wasserstoff durch einen Reaktor oder mehrere Reaktoren geleitet. Dort wird mit Hilfe von Nickel-Molydän-Katalysatoren eine hydrierende Spaltung vorgenommen. Anschließend trennt man die Spaltprodukte von den Gasen, die zusammen mit frischem Wasserstoff und wasserstoffhaltigen Zirkulationsgasen wieder zum Anfang des Verfahrens geleitet werden. Die einzelnen Spaltprodukte werden dann in einem Destillationsturm wieder aufgetrennt. Das Hydrocracken hat den Vorteil, daß sich je nach Katalysator und Betriebsbedingungen die gewünschte Ausbeute bestimmen läßt. So kann man im Hydrocracker entweder fast ausschließlich Benzin oder vorwiegend Dieselkraftstoff und leichtes Heizöl bei einem geringen Benzinanteil gewinnen. Nachteilig ist der hohe Wasserstoffbedarf und der hohe Druck, der 15 bis 20 cm starke Reaktorwände erfordert.


Chemische Darstellungen des Crackens:


Bei thermischen und katalytischen Cracken entstehe im größeren Maße Olefine, d.h. ungesättiggte Kohlenwasserstoffe. Dies ist ein zwangsläufige Folge des Chemismus der Spaltreaktionen, wie das vereinfachte Beispiel für themrisches oder katalytisches Cracken zeigt:

Coken:


Vakuumdestillation und thermische Crackverfahren erzeugen Rückstände, die schwerer sind als das normale schwere Heizöl. Solche Rückstände können hohe Anteile von Schwefel-, Stickstoff- und Metallverbindungen enthalten die eine katalythische Verarbeitung stark behindern würden. Diese schweren Rückstände können jedoch in einer weiteren Konversionsanlage, dem Coker, in Gase, Benzine, Mitteldestillate und Petrolkoks umgewandelt werden Beim 'Delayed-Coking' wird dazu Einsatzprodukt unter Druck in einen Ofen geleitet und auf etwa 500° C erhitzt. Beim Austritt setzt die Koksbildung verzögert ein; sie läuft im wesentlichen in der nachgeschalteten Trommel ab. Die durch das Cracken entstandenen Dämpfe werden in einem Fraktionierturm destilliert, während der entstandene Koks als Brennstoff direkt verkauft oder einem Kalzierungsprozeß unterzogen wird. Der kalzinierte Koks kann zum Beispiel zur Herstellung von Elektroden verwendet werden.



Reformieren:


Häufig entsprechen die durch die verschiedenen Verarbeitungsverfahren gewonnenen Produkte noch nicht der geforderten Qualität.Zur Verwendung von Benzinen als Vergaserkraftstoff für den Antrieb eines Autos müssen die Moleküle niedrig-oktaniger Benzinanteile im Reformer in hoch-oktanige Benzinkomponenten umgeformt werden. Dazu wird Rohbenzin aus der Destillation erneut erhitzt. Die heißen Gase gelangen unter Druck in mehrere, hintereinander geschaltete Reaktoren. Hier, in Gegenwart eines Platinkatalysators verlieren die niedrig-oktanigen Moleküle einige ihrer Wasserstoffatome und werden zu hoch-oktanigen Benzinmolekülen. Dabei entsteht als Nebenprodukt Wasserstoff. Aus dem letzten Reaktor gelangt das neue Erzeugnis, das ,,Reformat' in einen Trennbehälter (Abscheider). Dort wird der bei Reaktion entstandene Wasserstoff abgetrennt. Der Wasserstoff wird teils wieder zum Vorwärmeofen zurück, teils zu anderen Verarbeitungsanlagen geleitet, während das Reformat in einen weiteren Turm in Gase und Benzin aufgeteilt wird.






Veredelung und Nachbehandlung:


Häufig entsprechen die durch die verschiedenen Verarbeitungsverfahren

gewonnen Produkte noch nicht der geforderten Qualität. So sind z. B. die mit dem bisher beschriebenen Verfahren hergestellten Benzine als Kraftstoffe nicht für Ottomotoren geeignet. Sie müssen in weiteren Prozeßanlagen veredelt werden. Desweiteren muß Benzin, Kerosin und Mitteldestillaten der unerwünschte Schwefel entzogen werden. Die Ausgangsprodukte zur Schmierölherstellung müssen mit Hilfe von Lösungsmittel von Aromaten und durch Kältebehandlung von langkettigen Normalparaffinen ( Wachsen ) befreit werden. Letztlich entstehen die verkaufsfertigen Mineralölprodukte erst im letzten Schritt in der Mischanlage, wo sie z. T. bis zu 12 'Komponenten' nach ständig neu anzupassenden Rezepturen gemischt werden. Damit wird die Auslieferung von Produkten gleichbleibender Qualität aus ständig wechselnden Rohölen und verschiedenen Verfahren garantiert.









Entschwefelung ( Hydrofiner und Clausanlage):


Manche Rohöle haben einen hohen Schwefelgehalt. Aus den Produkten, die aus diesen Rohölen hergestellt werden, muß der Schwefel entfernt werden. Dies geschieht im Hydrofiner, einer der wichtigsten Raffinationsanlagen.

Das Produkt - z.B. Benzin oder Heizöl - wird zunächst mit Wasserstoff vermischt und erhitzt. Das heiße Gemisch leitet man in einen Reaktor, der mit einem Katalysator befüllt ist. Dort verbinden sich bei einer Temperatur zwischen 300 und 400° C über dem Katalysator der Schwefel aus dem schwefelhaltige Produkt mzt dem Wasserstoff zu Schwefelwasserstoff. Das gereinigte Produkt, der entstandene Schwefelwasserstoff und übriggebliebener Wasserstoff werden im nächsten Schritt getrennt. Der Wasserstoff kehrt an den Ausgangsort des Verfahrens zurück, während der Schwefelwasserstoff in der nachgestellten Clausanlage zu elementarem Schwefel umgesetzt wird.

Durch das Hydrofinieren wird aber nicht nur der Schwefelgehalt in den Produkten herabgesetzt, also ein Beitrag zur Luftreinhaltung geleistet, sondern auch die Produktqualität verbessert. So wird beispielsweise die Zündwilligkeit von Dieselkraftstoff heraufgesetzt. Für den praktischen Fahrbetrieb bedeutet dies geringere Korrosion, Verringerung der Rückstandbildung im Verbrennungsraum und geringere Verschmutzungsgrad der Motorenöle bei Kaltfahrnbetrieb der im Hydrofiner, aber auch bei vielen anderen Verarbeitungsvorgänger in der Raffinerie anfallende Schwefelwasserstoff - ein Gas, nachdem auch faule Eier riechen - wird in der Clausanlage zu elementarem Schwefel und Wasser verbrannt


















Anhang: Literaturverzeichnis


CD Römpp Chemie Lexikon - Version 1.0

Stuttgart/New York: Georg Themie Verlag



Microsoft Encarta 1994 Microsoft Corporation

1994 Funk & Wagnalls Corporation



Gerhard Bischoff; Der Griff ins Erdinnere

Safari-Verlag Berlin




Neufingerl, Urban, Viehhauser; Chemie 2

Bohmann Verlag Wien



Aus der Sprache des Öls



Petrochemie Polymere



Mineralöl und Raffinerien










Haupt | Fügen Sie Referat | Kontakt | Impressum | Nutzungsbedingungen







Neu artikel