REFERAT-MenüDeutschGeographieGeschichteChemieBiographienElektronik
  EnglischEpochenFranzösischBiologieInformatikItalienisch
  KunstLateinLiteraturMathematikMusikPhilosophie
 PhysikPolitikPsychologieRechtSonstigeSpanisch
 SportTechnikWirtschaftWirtschaftskunde  

Scannertechnologien




 

 

 

Scannertechnologien

 

 

 

 

1. Grundlagen der Bildverarbeitung

 

Die Basis für das Farbempfinden ist das Auge, das auf kurze Wellenbereiche elektromagnetischer Strahlung reagiert. Das Gehirn bewertet dann diese Strahlung mit roten, grünen und blauen Sinneseindrücken. Diese Farbeindrücke sind jedoch subjektiv und besitzen keine festgelegten Definitionsmöglichkeiten. Um nun diese Farben dennoch beschreiben und festlegen zu können, hat man zwei Farbmodelle entwickelt.



1.1 Additive Farbmischung

Dies bedeutet, dass 100% aller Grundfarben (Rot, Grün und Blau) weißes Licht ergeben.

1.2 Subtraktive Farbmischung

Bei diesem Modell werden über Filter einzelne Spektralbereiche von auftreffendem weißen Licht abgezogen. Solche Filter können sein: Filterlampen, Oberflächen von nicht selbstleuchtender Körper (z.B. Folien) oder beim Druckprozess die Druckfarben. Werden alle Filter übereinandergelegt, fallen alle Spektralbereiche weg und kein Licht erreicht den letzten Filter. Das Ergebnis ist also die Farbe Schwarz. Direkt komplementär zum RGB-Modell wäre die Farbmischung mit Cyan, Magenta und Gelb. Es könnten Farben also problemlos hergestellt werden. Cyan und Magenta müsste Blau vom Papier reflektieren. Cyan und Gelb -> Grün, Magenta und Gelb -> Rot. Der Zusammendruck aller drei Farben müsste reines Schwarz ergeben. In der Realität reflektieren diese Farben aber auch Anteile in anderen Spektralgebieten, sodass ein Zusammendruck kein Schwarz, sondern einen schmutzigen Blauton ergibt. Deshalb benötigt man einen vierten Farbauszug, nämlich Schwarz. Die Farbmischungen aus Cyan, Magenta, Gelb und Schwarz nennt man Separations- oder Prozessfarben.  

Die Basis für den heutigen Offsetdruck ist also der Vierfarbdruck. Die RGB-Daten des Scanners müssen in die für den Druck gebräuchlichen Farben umgewandelt werden. Eine Internationale Kommission CIE (Commission Internationale  de l´ Eclairage) entwickelte in den 30er Jahren einen Farbraum, der noch heute als Grundlage der Farbbildreproduktion gilt. In diesem Raum können jedem Farbton Koordinaten  zugeordnet werden, die sich messtechnisch erfassen lassen. Es wurden auch Normen geschaffen, die genau definieren, wie eine Druckfarbe auszusehen hat. Die Vierfarbseparation ist also nicht nur eine reine Invertierung  von Rot, Grün und Blau in die Komplementärfarben Cyan, Magenta und Gelb, sondern auch einen komplizierte Umrechnung.

 

1.3 Kalibrierung 

Um sicherzustellen, dass Farben zwischen Scannvorgang und Bildausgabe korrekt wiedergegeben werden, müssen die benutzten Geräte kalibriert werden. Die Farbdarstellung am Bildschirm ist so einzustellen, dass sie mit den Originalfarben übereinstimmt. Das ist jedoch einfacher gesagt als getan. Teure Hardware wie kalibrierbare Monitore oder Densiomete sind für diesen Vorgang nötig. Im professionellen Bereich  ist das weniger problematisch als im Heimbereich, wo in der Regel die Farbtafel genutzt werden muss.

Jeder Hersteller von Monitoren, Druckern, aber auch Softwareprogrammen arbeitete bisher nach seinen eigenen Bewertungskriterien. Die Industrie hat zwar eigene Programme zur Kalibrierung von Grafikkarten und Monitoren geschaffen, es kann aber trotzdem kein einheitlicher Abgleich bis hin zum Ausgabegerät geschaffen werden.

1.4 DPI      

Steht für Dots Per Inch also Bildpunkte pro Zoll. Der Dpi-Wert ist der Maßstab für

die Qualität des Scanners, je höher desto besser. Unterscheiden muss man

doch zwischen der tatsächlichen physikalischen Auflösung in dpi und der

durch mathematische Tricks künstlich gesteigerter Auflösung.

1.5 Interpolation     

Beizeichnung für ein mathematisches Verfahren, um den dpi-Wert künstlich zu verbessern. Dabei wird ein zusätzlicher Punkt zwischen zwei tatsächlich gescannten Bildpunkten errechnet. Dadurch lässt sich die Auflösung eines Bildes scheinbar verdoppeln. Das Aussehen hängt dabei von den umliegenden Bildpunkten ab. Die Punktdichte wird größer, mehr Details der Vorlage kommen allerdings nicht zum Vorschein. Ein eventueller Nachteil ist, dass das Ergebnis nicht unbedingt besser sein muss. Sehr feine Strukturen auf dem Original können zum Beispiel zusammenfließen oder klobig wirken.

 

2. Scannertechnik

Trotz der vielen Arten von Scannern arbeiten fast alle nach dem selben Prinzip.

Zuerst wird die Bildvorlage beleuchtet. Das einfallende Licht wird von der Vorlage

mehr oder weniger stark reflektiert. Dunkle Stellen 'saugen' den Lichtstrahl auf, helle Stellen werfen ihn zurück. Die Reflexion wird dann an lichtempfindliche, elektronische Bauteile geleitet. Dazu werden Stablinsen benutzt, damit einfallendes Streulicht das Ergebnis nicht verfälscht. Die elektronischen Bauteile, CCD´s (Charge Coupled Devices), geben in Abhängigkeit von der Intensität des Lichteinfalls einen Wert an den Rechner weiter, der daraus die Helligkeit des Bildpunktes bestimmt.

Die meisten Farbscanner basieren im Prinzip auf der Weiterentwicklung des Graustufenscanners.

2.1 Filter

Beim Farbfilterverfahren wird die Vorlage in drei Scanndurchgängen mit weißem Licht beleuchtet, und in jedem Durchgang wird den CCDs ein anderer Farbfilter vorgesetzt (Rot, Grün und Blau). So erhält man die Farbanteile jede einzelnen Punktes für Rot, Grün und Blau. Dieses additive Farbmodell entspricht der Darstellungsweise der Bildpunkte auf dem Monitor. Additiv bedeutet, dass 100 Prozent jeder Grundfarbe Weiß ergibt. Es gibt nur wenige Scanner, die mit diesem Verfahren arbeiten, dass auch sehr langsam ist. Vor der CCD-Zeile ist eine aufwendige Mechanik positioniert.

2.2 Fluoreszenzlampen

Beim zweiten Verfahren werden anstatt der Filter drei farbige Fluoreszenz-Lampen eingesetzt, die den entsprechenden Farbanteil der Vorlage reflektieren. Wegen der zeilenweise Abtastung ist nur ein Scanndurchgang notwendig. Mit der Farbtrennung durch RGB-Lichtquellen wird neben der Verringerung des Farbversatzes auch eine optimierte Scanngeschwindigkeit erreicht.

 

 

2.3 Prismen

Im dritten Verfahren arbeitet der Scanner mit einer weißen Lampe, deren Licht von der Vorlage reflektiert durch ein Prisma führt und in seine Rot-, Grün- und Blau-Anteile zerlegt wird. Drei verschiedene Reihen mit CCDs fangen gleichzeitig die drei Farbanteile auf. Diese Technologie liefert gute Ergebnisse, da keine Verluste Farbverfälschungen der Lampen oder Filter auftreten können. Dieses Verfahren ist zwar technisch aufwendiger dafür ist nur ein Scanndurchgang erforderlich und somit zeitsparender.



 

2.4 CCD (Charge Coupled Devices) und dpi-Wert

CCD-Sensoren sind elektrooptische Bauteile, die den ankommenden Lichtstrom in Form einer Ladung in einem Kondensator festhalten. Diese wird durch eine Treiberschaltung von Element zu Element bis zu Auslesestation am Ende der Zeile übertragen. CCDs sind auf einem Baustein herstellbar. Mit der Verbesserung dieser Technik wurde eine immer größere Anzahl von Elementen je Zeile möglich, so dass man heute die Breite einer A4-Seite mit einer Zeile abgetastet. Der mechanische Aufbau eines Scanners wird dadurch stark vereinfacht. Im Vergleich zum Trommelscanner ergeben sich jedoch auch einen Reihe von Nachteilen. Vor allem durch die Abtastung einer großen Anzahl von Einzelsensoren, die unterschiedliche Empfindlichkeiten und Kennlinien haben.

Die Dichte der CCDs bestimmt den maximalen dpi-Wert, mit dem der Scanner die Vorlagen lesen kann. Sind auf einer Länge von einem Zoll 300 solcher Sensoren angeordnet, so erreicht dar Scanner eine maximale Auflösung von 300 dpi. Eine Vorlage wird demnach Punkt für Punkt erkannt, jeder Punkt wird digitalisiert und auf dem Monitor dargestellt. Durch alle möglichen Tricks versucht man, immer höhere dpi-Werte zu erreichen.

 

 

3. Scannermodelle

 

3.1 Handscanner    

Den Scanner zieht man per Hand über die Vorlage. Auf der Unterseite befinden sich Führungsrollen und eine gut 100 mm breite Scannöffnung. Handscanner leisten Auflösungen bis zu 400 dpi, durch mathematische Tricks können diese auf theoretisch 800 dpi gesteigert werden. Der Nachteil ist nur dabei, dass der Weg dorthin nicht immer leicht ist, denn der relativ schmale Scannbereich lässt nicht zu, eine A4-Vorlage in einem Durchgang einzulesen. Die Software muss folglich das Ergebnis aus verschiedenen Teilen zusammensetzten, was zeitaufwendig und nicht immer zur vollsten Zufriedenheit funktioniert. Vorlagen mit hohen dpi-Wert, darf man nur sehr langsam mit dem Handscanner abtasten, da es sonst zu 'Sehfehlern' kommen kann. Außerdem ist auf ein genaues und gleichmäßiges Führen des Handscanners zu achten, vor allem wenn man Texte einscannen will, die über eine OCR-Software in Textverarbeitungsprogrammen weiterverarbeitet werden sollen.

 

3.2 Einzugscanner

Technisch gesehen besteht diese Gruppe aus einer Leiste von CCD-Sensoren (Charged Coupled Device), die allerdings nicht beweglich, sondern feststehend ist. Die Vorlage wird nicht von der Leseeinheit abgetastet, sondern durch einen Motoreinzug an den CCD-Sensoren vorbeigeführt. Das heißt die Vorlage wird wie in einem Faxgerät eingezogen und über die Scannertrommel, die in starrer Position bleibt, geführt. Mit den Einzugsscannern lassen sich bis zu A4 große Vorlagen in einem  Abtastvorgang einlesen. Der offensichtliche Nachteil der Einzugsscanner bleibt allerdings die ausschließliche Verarbeitung von Einzeldokumenten, denn Bücher und Kataloge lassen sich nicht verarbeiten. Außerdem kann es bei einigen Modellen beim Einzug glatter Vorlagen, wie Fotos zu unangenehmen  Randverzerrungen kommen.

3.3 Flachbettscanner      

Dies sind Tischgeräte, die im Aussehen einem Fotokopierer ähneln. Unter einer lichtundurchlässigen Klappe platziert man die zu scannende Vorlage auf einer Glasplatte, genau wie beim Kopierer. Die Scannvorrichtung wird während des Abtastvorgangs unter der Glasscheibe entlanggeführt. Der Vorteil dieses Scanners ist sein exaktes, automatisches Scannverfahren. Je nach gewünschter Qualität sorgt das Gerät selber dafür, dass die Scannvorrichtung mit der notwendigen Geschwindigkeit über die Vorlage fährt. Der exakte Führungsmechanismus ist auch deshalb nötig um beim Farbscannen die Grundfarben separat in einzelnen Gängen einlesen zu können und dann genau übereinander legen zu können. Das Einlesen aus Bücher stellt auch kein Problem dar, weil die Abdeckhaube nicht unbedingt geschlossen bleiben muss.

3.4 Diascanner     

Dieser Scannertyp ist im professionellen Bereich einzuordnen, dessen Einsatzgebiet auf das Einsehen von Diapositiven und -negativen beschränkt ist. Er besitzt spezielle Vorrichtungen zum Einschub der Dias. Die Qualitätsforderungen an Diascanner sind sehr hoch angesetzt. Die auf Dias transportierten Bilder werden fast ausschließlich in Vergrößerungen weiterverarbeitet und müssen besonders exakt und mit hoher Detailtiefe erfasst werden. Im Vergleich zu den 'Diaaufsätzen' bei Flachbettscannern lassen sich mit einem speziellen Diascanner Auflösungen bis zu einigen tausend dpi als Punkte pro Zoll erreichen. Außerdem arbeiten die Geräte mit einem speziellen Ausleuchtungsverfahren, um die üblichen Streu- und Nebeneffekte beim Einscannen der stark reflektierenden Vorlage zu eliminieren. Professionellen Geräte  sind auch für die Bearbeitung von Großformaten bis zu 6 x 9 Zentimeter ausgelegt und verfügen über eine Abtasttiefe von 30  oder sogar 36 Bit.

 

3.5 Trommelscanner    

Dies ist der älteste Scannertyp und liefert die exaktesten Ergebnisse. Auflösung, Tempo, und Qualität sind bis heute unerreicht. Beim Trommelscanner wird die Vorlage um eine Trommel herumgewickelt und bewegt sich schraubenförmig unter dem Beleuchtungs- und Abtastsystem. Da Lichtquelle und Detektor immer in der gleichen Lage zum abtastenden Bildpunkt sind, kann so mit einfachen Mitteln hervorragende Qualität erreicht werden. Als lichtempfindliches Element arbeitet im Inneren des Trommelscanners ein 'Multiplier', an dem die Vorlage während des Scannvorgangs sowohl horizontal als auch vertikal vorbeiwandert. Fotozellen fangen die Reflexionen auf und verarbeiten sie zu computerverträglichen Daten. Trommelscanner erfassen Vorlagen sehr schnell und in höchster Qualität. Ihr Einsatzgebiet liegt ausschließlich im Bereich der professionellen Druckwerkherstellung. Nachteile sind neben der aufwendigen mechanischen Verarbeitung noch der hohe Preis. (60 000 €)

 

 

 




3.6 3D-Scanner      

Auch dreidimensionale Vorlagen lassen sich mit dem 3D-Scanner einlesen. Diese Geräte verwendet man meist zum Katalogisieren oder Archivieren von Objekten, wie zum Beispiel in der Autozubehör-Branche. Einige Modelle dieser Scanner haben eine Besonderheit, die sie auszeichnen. Denn einige kommen ohne eigener Lichtquelle aus, da sie das normale Tageslicht bzw. die Zimmerbeleuchtung ausnutzen. Der Nachteil ist, dass die Abtasteinrichtung fest installiert ist und so der Scannerkopf einen Schatten auf die Vorlage werfen kann, wenn keine optimale Beleuchtung vorhanden ist.

4. Scannmodi

4.1 Bilevel-Modus

Bei diesem Modus erkennt der Scanner nur zwei Farben, Schwarz und Weiß. Er eignet sich somit primär nur für Linienzeichnungsvorlagen oder für Bilder, bei denen keine verschiedenen Graustufen vorliegen. Um feine Linienzeichnungen einzulesen ist einen Auflösung von 400 dpi einzustellen um damit gute Ergebnisse zu bekommen.

4.2 Graustufenmodus

Zwischen dem Begriff  'Schwarzweiß-Scanner' und 'Graustufen-Scanner' herrscht oft Ungewissheit. Denn auch ein Bilevel-Scanner kann Bilder mit  verschiedenen Graustufen liefern. Dabei kommt das Dithering-Verfahren zum Einsatz. Bei fast allen Bilevel-Scanner kann zwischen zwei bis vier Dither-Muster ausgewählt werden. Welches Muster man dann auswählt hängt von der Vorlage ab. Es gibt auch Bilevel-Scanner mit einer entsprechenden Software, wo die Umwandlung der Rasterbilder in echte Graustufen am Bildschirm bereits während des Einscannens erfolgt. Meistens werden die gerasterten Bilder jedoch erst nachher umgerechnet. Die Dauer hängt natürlich vom eingesetzten PC ab.

 

4.3 Echtgraustufen-Modus

Bei dieser Methode kann bereits die Scannerhardware beim Einscannen zwischen 23, 64 oder 256 Graustufen, je nach Modell, unterscheiden. Im Gegensatz zu Bilevel-Modellen ist hier also keine Umrechnung erforderlich. Die Bilder liegen sofort als echte Graustufenbilder vor. Eine Graustufenzahl von 256 ist in der Praxis nicht mehr sinnvoll und von 64 Stufen kaum zu unterscheiden, weil das menschliche Auge ohnehin nicht mehr als 64 Graustufen unterscheiden kann. Beim Farbscannen arbeitet der Scanner ähnlich wie bei der Echtgraustufen-Erkennung. Er unterscheidet beim Einscannen allerdings zusätzlich verschiedene Farbtöne.

Auch Farbscanner verfügen oft über eine Ditheringoption, die sich auszahlt, wenn Bilder auf Farbdrucker ausgegeben werden sollen. Denn beim Ausdruck müssen Echtfarben- oder Echtgraustufen-Bilder wieder softwaremäßig gerastert werden. Verfügt ein Scanner über Truecolor-Qualität (d.h. 24 Bit Farbtiefe = 16,8 Mio. Farben) ist das Dithering überflüssig. Für normale Bildverarbeitung reichen allerdings 256 oder 4096 Farben voll aus.

 

 

4.4 Dithering

Ein Laserdrucker mit einer Ausgabequalität von 300 dpi ist in der Lage auf einem Zoll 300 Schwarze Punkte zu setzten oder weiße Punkte freizulassen. Diese Auflösung erreicht man, wenn man ein völlig schwarzes Bild druckt. Wenn es darum geht Graustufen auf das Papier zu bringen, sinkt der dpi-Wert des Druckers um ein Vielfaches. Drucker können keine Graustufen drucken, deshalb müssen sie simuliert werden. Dieses Verfahren nennt man Dithering. Dabei wird jeder Bildpunkt durch ein Raster dargestellt, in dem je nach Größe unterschiedlich viele druckbare Punkte Platz finden. So lassen sich in einem 2 x 2 Raster kein, ein, zwei, drei oder vier Punkte drucken. Je mehr Punkte gesetzt werden, desto dunkler erscheint die Stelle auf dem Ausdruck. Graustufen werden also dem Auge nur vorgetäuscht. Ein 2 x 2 Raster kann drei Graustufen, Schwarz und Weiß darstellen. Bei einem 16 x 16 Raster können schon 255 Graustufen, Schwarz und Weiß abgebildet werden. Je höher der dpi-Wert, desto größer werden auch die Dateien. Eine mit 300 dpi eingescannte A4-Seite wird in gut 8,7 Millionen Bildpunkte zerlegt. Bei einem reinem Schwarzweißscann können acht Punkte in einem Byte gespeichert werden, dennoch würde die Datei größer als 1 MByte sein. Sollen gar 255 Graustufen erkannt werden, benötigt jeder Bildpunkt ein Byte, somit würde die Datei 8,7 MByte groß sein.

 

5. OCR-Software/Texterkennung

           

OCR steht für Optical Character Recognition. Solche Programme analysieren gescannte Texte und erkennen die Buchstaben durch Vergleich mit gespeicherten Mustern oder anhand charakteristischer  Zeichenmerkmale. OCR-Software wandelt die Buchstabenbilder in Daten um, die von Textprogrammen erkannt und bearbeitet werden können.

5.1 Vorgehensweise

 

Bevor editierbare Zeichen entstehen, muss das Programm die Vorlage in Absätze, Zeilen und Einzelzeichen aufteilen. Wenn wir ein Druckbild als sauber anerkennen so ist es für ein Zeichenerkennungsprogramm noch lange nicht frei von Fallen und Schwierigkeiten. Das beginnt bei der Zeilentrennung, wenn der Abstand der Textzeile sehr gering ist und sich die Unterlänge mit der Oberlänge des Zeichen der nächsten Zeile überschneiden. Eine Zeilenschräglage von ein bis zwei Grad liegt meistens innerhalb der Toleranzgrenze. Stärkere Winkel führen jedoch zu argen Differenzierungsproblemen, weil die Schräglage durch Drehen der Bitmapvorlagen zu beseitigen ist. Nach der Aufgliederung in Absätze und Zeilen erfolgt die Separation in einzelne Zeichen. Ein anderes Problem ergibt sich bei engstehenden Schriften. Dabei kann ein rn oder ri schnell zum m werden. Hier wird daher die Fuzzy Logic eingesetzt.



Wenn herkömmliche Algorithmen nicht ausreichen setzt man diese Logik ein. Sie erfasst nämlich auch Mehrdeutigkeiten. Das heißt es werden für ein problematisches Zeichen mehrere Muster bereit gestellt. Es wird nicht mehr streng nach der Kategorie eines Zeichens geordnet, sondern es werden die absoluten Wahrheitswerte (True, False)  durch eine 'linguistische Variable ersetzt. Diese Variable kann jetzt dehnbare Beschreibungsgrößen annehmen, wie:

'eher geradlinig', 'eher gebogen', stark verschlungen', 'eher breit' oder 'Strichbeginn oder Strichende'. Eine leichte Abweichung in der erkannten Merkmalsmenge führt bei der herkömmlichen Logik zu einem völligen Versagen beim Erkennen. Bei der Fuzzy-Technologie wird zum Beispiel bei einem leicht gebogenes, etwas breiteres Zeichen ohne Anfang und Ende auf eine Null oder O entschieden.

 5.2 Erkennungsverfahren

 

Die klassische Bearbeitung der grafischen Pixelmuster bzw.  Umrisse unterscheidet zwei grundlegende Methoden: - die Mustererkennung (Pattern Matching) und

                                        - die Umrisserkennung (Feature Recognition).

Alle Verfahren stoßen aber an ihre Grenzen, sobald sich die einzelnen Zeichen einer Schrift nicht mehr von einander separieren lassen. Mit der Hand geschriebene Schriften können daher im Normalfall nicht mit einem herkömmlichen Texterkennungsprogramm erfasst werden.

 

5.2.1 Mustererkennung

 

Bei dieser Methode wird das eingelesene Zeichen mit den in einer Tabelle gespeicherten Bitmustern verglichen. Diese Tabelle entspricht dem Font. Dieses Verfahren eignet sich vor allem bei Vorlagen mit hoher Druckqualität, die nur wenige Variationen in der Schriftgestaltung aufweisen, wie zum Beispiel bei Bücher. Jedes gelesene Zeichen wird solange mit den in Frage kommenden Schablonen verglichen, bis die höchstmögliche Übereinstimmung erreicht ist. Um alle gängigen drucktechnischen Ausprägungen eines Zeichens zu berücksichtigen, müssten eigentlich für jeden Buchstaben, jede Ziffer und jedes Sonderzeichen Hunderte von Mustern bereitgehalten werden. Eine solche große und rechenintensive Musterbildbank ist jedoch nicht nötig, da spezielle Normierungsverfahren die Gestalt der Zeichen glätten. Dazu werden Schwellwerte definiert, die unwichtige Punkteansammlungen einfach unterdrücken. Der Grad der geforderten Übereinstimmung hängt daher von programminternen Toleranzschwellen ab. Als Faustregel gilt: Je höher die Toleranzgrenzen, desto niedriger die Erkennungsquote. Die Mustererkennung arbeitet nur solange zufriedenstellend, wie sich passende Muster für einen erfolgreichen Vergleich finden lassen.

Mustererkennungsmodule sind daher meistens erweiterbar, so dass man Schablonenbibliotheken mit ausgefallenen Schriften und Sonderzeichen anlegen kann.

5.2.2 Umrisserkennung 

Dieses Verfahren analysiert die geometrischen Eigenschaften der Zeichen, indem es die Umrisslinien auf einfache geometrische Figuren reduziert. Bei der Umrisserkennung keine Pixelschablonen zum Vergleich herangezogen, sondern verschiedene mathematische Algorithmen, die den jeweils typischen Verlauf der Umrisslinien beschreiben. So lässt sich ein geschlossener Kreis als O interpretieren und zwei miteinander verbundene Bögen, also oval lassen auf eine NULL schließen. Es kommt also darauf an, ob eine Umrisslinie geschlossen ist und in welcher Form und Richtung sie gekrümmt ist. Beim C zum Beispiel verläuft die Krümmung konvex und nach links. Unterschiedliche Zeichengrößen bereiten bei dieser Erkennungsmethode natürlich keine Schwierigkeiten, weil sie ihren grundsätzlichen Verlauf beibehalten. Fettgedruckte Zeichen werden in ein Pixel breite Linien umgewandelt und so ebenfalls auf die Umrissgestalt reduziert. Fehlinterpretationen sind jedoch auch hier nicht auszuschließen, denn ein C kann schnell durch Verschmutzung zu einem O werden. Die Lesegenauigkeit hängt zwar auch bei der Umrisserkennung von der Druckqualität, den Zeilen- und Zeichenabständen ab, doch ist dieses Verfahren wesentlich universeller einsetzbar, wenn auch schwieriger zu programmieren.

5.2.3 Feature Extraction

Diese Texterkennungsmethode ist noch relativ jung. Die Pixelstruktur eines Zeichens wird hier nicht mit einem Muster verglichen, sondern mit Hilfe typischer Zerlegungsmerkmale einer bestimmten Merkmalsgruppe zugeordnet. Die Einstufung eines Zeichens geht zunächst von der Anzahl seiner Bestandteile aus. So gehört ein O genauso wie ein L und ein U in die einteiligen Zeichen . I und Ü sind zweiteilig, und ein A zählt wegen seiner drei strichförmigen Bestandteile zu den dreiteiligen Zeichen. Die Mehrheit der einteiligen Zeichen wird weiter unterteilt in solche, die über mindestens eine Rundung verfügen und solche die dieses Merkmal nicht aufweisen. Ein P und ein Q gehören zur Untergruppe mit einem Zyklus, ein 7 hat keinen und ein 8 hat zwei Zyklen. Weiter Untergruppen ergeben sich aus der Zählung der Öffnungen. Auch die Richtung, in die diese Öffnungen weisen dienen als Klassifikationsmerkmal. Zum Beispiel haben V und K eine Öffnung nach oben. Alle Klassen müssen so strukturiert sein, dass sich jedes Zeichen zweifelsfrei zuordnen lässt.

Die Winkelschnittanalyse legt Raster aus parallelen Streifenscharen über ein Zeichen und leitet daraus mathematische Funktionen ab, die dann zur eindeutigen Bestimmung des aktuellen Zeichens herangezogen werden.

5.2.4 Topologische Analyse

Auch dieses Analyseverfahren zerlegt das betreffende Zeichen, und zwar in Kreise und Linien, deren typische Anordnung mit gespeicherten Beschreibungen verglichen wird. Wie alle anderen Verfahren bewältigt sie unterschiedliche Ausprägungen eines Zeichens und gleicht zumindest geringfügige Verschmutzungen aus.










Haupt | Fügen Sie Referat | Kontakt | Impressum | Datenschutz







Neu artikel